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Abstract 

Derivations of exactly formulated Fourier-series rep- 
resentations of probability density functions (p.d.f.'s) 
of the magnitude of the structure factor are based on 
the fact that the structure factor and its real and 
imaginary parts are bounded. In some situations the 
bounds of the real and imaginary parts of the structure 
factor are different, and this gives rise to modified 
forms of the p.d.f.'s. Three physical examples that 
call for such modifications are investigated: (i) effect 
of dispersive scatterers on the p.d.f, of a centrosym- 
metric structure factor, (ii) effect of the presence of 
a centrosymmetric fragment in the asymmetric unit 
of a non-centrosymmetric space group, and (iii) effect 
of heavy scatterers in special positions of a non- 
centrosymmetric space group, where the imaginary 
part of the trigonometric structure factor for these 
special positions vanishes by symmetry. The general 
form of an exact Fourier p.d.f., taking account of 
such modifications, is derived, and expressions for 
Fourier coefficients are obtained for selected 
examples of the above three situations. It is seen that 
the effects of pseudocentrosymmetry may be most 
pronounced and those of dispersion are significant 
mainly in the range of small values of the structure 
factor. 

Introduction 

Properties of probability density functions (p.d.f.'s) 
of the magnitude of the structure factor have been 
investigated in a variety of ways. Approximations to 
the p.d.f.'s are generally derived using the central 
limit theorem (Wilson, 1949). Corrections to the cen- 
tral limit theorem are usually based on expansions in 
terms of orthogonal polynomials (e.g. the monograph 
by Srinivasan & Parthasarathy, 1976; Shmueli & 
Wilson, 1981). More recently we have considered 
exact representations of the p.d.f.'s in terms of Fourier 
or Fourier-Bessel series (e.g. Shmueli, Weiss, Kiefer 
& Wilson, 1984; Shmueli & Weiss, 1987). If we write 
E = A+ iB then the calculations of the p.d.f, of [E[ 
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have been carried out in two classes of problems: 
(i) B--0,  in which case [E]--IAI, and (ii) -Amax-< A, 
B < Amax, in which case IEI = (A2+ B2) 1/2. However, 
there are cases in which the maximum values of IAI 
and ]B] differ. Since the phases of the structure factors 
are then restricted to a certain subrange of (0, 27r), 
calculation of the p.d.f.'s is somewhat more compli- 
cated than in the case when both A and B fall in the 
same range. 

Three examples in which the problem of restricted 
phases appears are: 

(i) The structure contains significantly dispersive 
scatterers so that the imaginary parts of some atomic 
scattering factors cannot be neglected. Even when the 
space group is centrosymmetric and the origin is 
chosen at a center of symmetry, the imaginary part, 
B, of the structure factor cannot be neglected. Since 
the maximum value of B is necessarily smaller than 
the maximum value of the real part, A (see tables of 
scattering factors in International Tables for X-ray 
Crystallography, 1974), the phase of the structure 
factor cannot assume every value in the (0, 27r) range. 
This is true at least for X-rays, and not too close to 
an absorption edge. The problem of the effects of 
dispersion on intensity statistics was first considered 
by Wilson (1980), in the central limit theorem 
approximation, and was further studied by Shmueli 
& Wilson (1983) who derived further correction in 
terms of a Gram-Charlier expansion for the p.d.f. 
derived by Wilson (1980). In such approximate treat- 
ments the problem of unequal ranges never arises 
since A and B are inherently unrestricted in approxi- 
mations based on the central limit theorem. 

(ii) The structure belongs to a non-centrosym- 
metric space group but the asymmetric unit contains 
one or more centrosymmetric structural fragments. 
The presence of such centrosymmetric fragments 
ensures that the maximum values of the real and 
imaginary parts of the structure factor are unequal. 
This implies a phase restriction that must be 
accounted for in the exact analysis of the problem. 
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This kind of non-crystallographic symmetry was 
studied by a number of investigators (cf. Srinivasan 
& Parthasarathy, 1976, and references quoted therein; 
Wilson, 1980) in the central limit theorem approxima- 
tion, and was further investigated by Shmueli & 
Wilson (1983), who also termed the corresponding 
p.d.f. 'subcentric'. Wilson (1980) noted that p.d.f.'s 
accounting for dispersion and for the presence of 
centrosymmetric fragments in a non-centrosymmetric 
space group have, in the central limit theorem 
approximation, identical functional forms and 
different distribution parameters. 

(iii) The problem of calculating the p.d.f, of [El 
allowing for the presence of scatterers in special posi- 
tions has been investigated recently (Shmueli & 
Weiss, 1988). While most low-symmetry space groups 
can be treated on the assumption that the phase of 
the structure factor is unrestricted in the (0, 2 ~r) range, 
this is not possible in most space groups isomorphous 
with the point group 222 since the imaginary parts 
of the trigonometric structure factors corresponding 
to special positions vanish identically; in the space 
groups in which this happens, a phase restriction is 
clearly introduced. 

The three problems mentioned above have in com- 
mon the inequality of the maximum values of the real 
and the imaginary parts of the structure factor. It 
therefore appears of interest to derive the p.d.f, of 
[E I on the assumption that the maximum values of 
A and B differ. We then apply the results to typical 
examples that illustrate the three cases enumerated 
above. The next section presents the derivation of the 
general functional form of the p.d.f., and the follow- 
ing sections deal with exactly formulated p.d.f.'s of 
IE] accounting for the effects of dispersion, sub- 
centrosymmetric arrangements, and the presence of 
heavy scatterers in the general as well as special 
position of the space group P222. 

Derivation of the general functional form of the p.d.f. 

The starting point of the derivation of the p.d.f, of 
IE[ is the representation of the joint p.d.f, of the 
(A, B) pair in terms of a Fourier series. We are entitled 
to do this since each of A and B is bounded (Barakat, 
1974; Weiss & Kiefer, 1983; Shmueli et al., 1984), but 
we must now assume that the upper bounds AM and 
BM of A and B respectively may be unequal; we 
assume for simplicity that AM > BM. The exact con- 
tour in the (A, B) complex plane, surrounding all 
(A, B) values for which p(A, B) is non-zero, may 
assume different shapes in the various situations of 
interest, and any such contour must be contained 
within the rectangle of vertices: (-AM,-BM), 
(-AM, BM), (AM,-BM) and (AM, BM). The joint 
p.d.f., p(A, B), vanishes by definition at any point 

(A, B) lying outside the exact contour. The region of 
the (A, B) plane, bounded by this contour can thus 
be taken as a compact support of the p.d.f., which 
can therefore be expanded in the double Fourier 
series 

4AMBM Cu~exp -~-i AM 
vB 

(1) 

where the Fourier coefficient Cu~ is given by 

A M B M 

C,,~ I f  P(A'B)exp[zri(u-~M vB)J = + BM dA dB 
A ,  w - B M 

( la )  

In order that the expansion (1) correctly represent 
the joint p.d.f, p(A, B), the integration limits in ( la )  
should include (or coincide with) the region of non- 
vanishing p(A, B), i.e. the region enclosed within the 
exact contour mentioned above. The integration 
extends over the area of the above-defined rectangle 
but, obviously, only those values of p(A, B) which 
correspond to the inside of the exact contour give 
rise to non-vanishing contributions to the Fourier 
coefficient Cu~. Hence, the value of the integral in 
(1 a) is independent of the precise shape of the exact 
contour, provided the latter is contained within the 
rectangular boundary, on which the Fourier 
expansion (1) is based. The actual exact formulation 
of the Fourier coefficients is based on their representa- 
tion as values of the characteristic function at the 
points (zru/AM, ~'v/BM), i.e. on the evaluation of the 
average appearing in ( la)  for the cases of interest. 
This average, in turn, is based mainly on the statistical 
properties of the trigonometrical structure factors for 
the problem examined, and can usually be evaluated 
in closed form. This is analogous to our approach to 
other (e.g. Shmueli & Weiss, 1987, 1988) distributions 
in crystallographic statistics. 

In order to obtain the desired expression for the 
p.d.f, of[El from (1), we replace A and B in (1) by 
[El cos ~p and [El sin ~p respectively and then use the 
fact that p(IEl,~)-{EIp(IE[cos~,lE[sin~p). We 
finally integrate out the phase, taking account of the 
proper limits of the integration. As shown in Fig. 1, 
three ranges of E have to be considered in order to 
cover conveniently the whole rectangle described 
above: 

(a) [E[_< BM <AM 
In this range the phase of E can have any value 
between 0 and 2~r. 

(b) BM <lEI <-AM 
The phase is here restricted and its limits in the 
positive quadrant are ~1 = 0 and ~2 -- sin -1 (BM/[EI). 
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(c) AM<IEI<_(A~+B~) '/2 
The phase is here restricted and its limits in the 
positive quadrant are ~Pl = cos -1 (AM/[E[) and ~P2 = 
sin- '  (BM/[E[). 

In range (a) the p.d.f, of [El is analogous to that 
given by Shmueli & Weiss (1987), 

p(IEI) - - -  2A~B~ 
(2) 

The ranges (b) and (c) can be treated by first summing 
the exponential phase factor in (1) at the points ~0, 
-q~, 7r-q~ and 17-+~p and subsequently integrating 
over q~ in the positive quadrant only. The p.d.f, of 
I EI then takes the form 

p ( I E I ) - I E I  AMB------M~ C,v 
~P2 

x f cos[G(u)cos~o]cos[H(v)sinq~]d~o. 
q~l 

(3) 

where G(u)=,trlE[u/A M and H(v)=TrlElv/BM. 
The integral in (3) can either be evaluated by numeri- 
cal integration or in terms of an infinite series. If the 
former procedure is adopted we recommend use of 
the Romberg algorithm (e.g. Davis & Rabinowitz, 
1967), available in user libraries for mainframes (e.g. 
in IMSL) as well as for personal computers (e.g. in 
Borland's Pascal 4.0 Numeric Toolbox). Alterna- 
tively, the integrand in (3) can be expressed as an 
infinite series of Bessel functions, the angular part of 
which is integrable in closed form. The result is a 
replacement of the integral by a rapidly converging 
series. This alternative representation of (3) is 

P(I El) = ( IEI /AMBM)[(~2-  ~,) + 2(S, + $2 + S,2)], 

(4) 

/ 

\ 

I m  

BM 

/ 
- - R e  

Fig. 1. Geometrical locus of  E = A + iB for unequally bounded A 
and B and its subdivision for the purpose of  calculation of  the 
p.d.f, of IEI. The numbers 1, 2 and 3 denote the three ranges of  
the rectangular region which were denoted in the text by (a),  
(b) and (c) respectively. 

where 

and 

with 

sl:.:IE C.o{(~- ~,)Jo[O(u)] 
<3O 

+ Y. (-1)PJ2p[G(u)] 
p=l 

x[sin (2p~o2) - sin (2p~o~)]/p}, (5) 

s~= E Co~ (,p~-,p,)Jo[g(v)] 
v = l  

co 

+ E J2p[H(v)] 
p=l  

x[sin (2pq~2)- sin (2p~o~)]/p}, (6) 

/ 

S12---- ~ ~.. C,,~ q;2-~l)Jo(~')+ ~ (-1)PJ2p(~) 
u=--oo v=l p=l  

) 
X {[sin (2p¢2)-s in  (2p~p~)]/p} cos (2pA)~, 

. i  

(7) 

;= {[ a ( u ) y  + [H(v )y}  '/~ 
and (8) 

A = tan -1 (vAM/uBM). 
Summations over the indices u and v in (2) and (3) 
extend over the range (-oo, oo), and even with favor- 
able convergence properties it is worthwhile to take 
advantage of the symmetry of these summations. It 
is easily seen that the summations can often be 
confined to positive indices only, and the multi- 
plicities are best accounted for if the index 
combinations u = 0 ,  v # 0 ;  u¢-0, v=0 ;  u # 0 ,  v # 0  
are considered separately. Furthermore, the double 
summation over non-zero indices need only be evalu- 
ated for u-> v, provided suitable internal symmetri- 
zation is performed (Shmueli, Rabinovich & Weiss, 
1989). 

Derivation of Fourier coefficients and related examples 

We shall now present the Fourier coefficients for (2) 
and (3), for the cases (i), (ii) and (iii) outlined in the 
Introduction, and illustrate the corresponding p.d.f.'s. 

Anomalous dispersion in the space group P1 
The normalized structure factor can now be written 

as  

N / 2  

E = 2  ~ (n~+in;)cosOj, (9) 
j= l  

where O; = 2~'h. rj, and the real and imaginary parts 
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of the normalized scattering factor are defined by 

nj=fj I/kl 2 and nj , 
k=l k=l 

(101 

where fj = f j  + / f7  is the conventional scattering factor 
of the j th  atom. The maximum values of A and B 
are here 

N N 
AM= ~ nj and BM = ~, n}' (11) 

j= l  j= l  

and the locus of E, corresponding to this case, is the 
rectangle shown in Fig. 1. The characteristic function 
corresponding to the p.d.f, of [El is given by 

N/2 

C((01, (02)=  H Cj((01, (02), 
j=l  

where 

Cj( (01, (02) 

=(1/27r) ~ exp[2i((0,nj cos O+(02nj' cos O)]dO 
--77" 

= Jo[2(n~(0, + n;(02)1. (12) 

The Fourier coefficients appearing in (2) or (3) are 
therefore 

Cur = Jo 2~" n j -T- -+n J . (13) 
j= l  

This situation is illustrated in Fig. 2 by comparing 
the p_d.f, of lE[ for a heterogeneous asymmetric unit 
of P1 with and without allowing for dispersion. This 
hypothetical asymmetric unit is taken as C19Pt, all 
the atoms being assumed to reside in general positions 
of the space group. It is seen that the effects of 
dispersion (allowed for only for the heavy atom) 

p(IW.I) 
I dispersion: 

~ ~ ~ ,  allowed for 

I ' I ' 

0 I 2 

Fig. 2. P.d.f. of IE] for Pi :  a strongly dispersive scatterer. The 
figure presents the p.d.f, of IEI for the space group P1, for the 
assumed composition C19Pt of the asymmetric unit. The solid 
line denotes the p.d.f, computed from (2) and (3) with Fourier 
coefficients obtained from (13). The real and imaginary parts of 
the dispersion correction are taken from International Tables for 
X-ray Crystallography (1962). The dotted curve corresponds to 
the p.d.f, of IE[ for the above composition but with neglect of 
dispersion (as in Shmueli et al., 1984). 

are: (i) the p.d.f, equals zero at IE] = 0, in contrast to 
the dispersionless p.d.f, which starts off from some 
finite value, and (ii) the p.d.f, oflEI shows a small but 
significant spike at a low value of lEI, while its shape 
is very close to that of the dispersionless one at larger 
values o f [E  I . Two points might be made about these 
results: (a) one might say that the p.d.f, of IEI is 
affected by dispersion mainly for small (and usually 
not so accurately measured) values of [El, so that 
ignoring dispersion should not affect greatly the resol- 
ution of P1 vs P1 space-group ambiguity, and (b) 
methods of accurately processing the intensities of 
weak and 'unobserved' reflections could be gauged 
against p.d.f.'s of I EI in which dispersion has been 
allowed for. It appears to be of interest to extend this 
result to other centrosymmetric space groups in order 
to confirm these conclusions more generally. 

A subcentric arrangement in the space group P1 

An exact characteristic function for this example 
was briefly presented elsewhere (Weiss, Shmueli, 
Kiefer & Wilson, 1985) and is rederived here for 
completeness. Let the unit cell of P1 contain N atoms 
and let M of them constitute a centrosymmetric frag- 
ment, the remaining N -  M atoms not being related 
by any symmetry operation. It is also easy to account 
for anomalous dispersion in the centrosymmetric 
fragment of such an arrangement. 

If we choose the origin at the (non-crystallo- 
graphic) center of symmetry the normalized structure 
factor can be written as 

M/2 N 
E = 2  ~ n j cos0 j+  ~ nj(cosOj+isinOj)  

j= l  j=M+I  

= A + i B ,  (14) 

where nj is the normalized scattering factor of the j th  
atom. The maximum values of the real and imaginary 
parts of E are, in the present case, 

M/2 N 
AM =2  X nj+ X 

j= l  j=M+I 
and 

N 
B~= ~ nj 

j=M+I  

nj 

(15) 

and are used in the construction of the Fourier series 
for the p.d.f, of lE[ for this situation. The locus of E 
is also contained in the rectangle shown in Fig. 1. 
The Fourier coefficients are obtained by evaluating 
the average in ( la ) ,  with A and B defined in (14). 
These coefficients evaluate to 

c o= r l  ) r l  JoL ' BM) J 
(16) 

where dispersion has been neglected. All one has to 
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do in order to account for anomalous dispersion of 
the centrosymmetric fragments is to replace unJAM 
in the first product in (16) by un~/AM+vnj'/BM, 

= '+ in~', for the dispersive scatterer. The where nj nj 
p.d.f, of IEI is then computed from (2) or (3) accord- 
ing to the value of IEI, as described above. 

As pointed out above, the influence of the subcen- 
tric arrangement on the p.d.f, of the structure-factor 
magnitude was considered by several authors 
(Srinivasan & Parthasarathy, 1976; Wilson, 1980; 
Shmueli & Wilson, 1983), who used approximations 
based on the central limit theorem as well as higher- 
order corrections. The present result allows one to 
evaluate this effect from an exactly formulated p.d.f., 
for any atomic composition. Dispersion corrections 
as outlined in the previous section can also be taken 
into account. Curves of some typical p.d.f.'s for the 
present case are shown in Figs. 3 and 4. Fig. 3 shows 
the p.d.f, of [El for the space group P1, the unit cell 
of which contains a centrosymmetric fragment with 

p(IEI) 

I , I , 
0 1 2 Izl 

Fig. 3. P.d.f. of IE I for PI: a heterogeneous subcentric arrange- 
ment. The assumed composition of the unit cell of P1 is C43Pt2, 
where C38Pt2 comprises a centrosymmetric fragment with the 
atoms in general positions and the dispersion of platinum is 
allowed for. Solid line: theoretical p.d.f, from (2) and (3) and 
a modified version of (17) that accounts also for dispersion. The 
histogram is constructed from magnitudes of simulated normal- 
ized structure factors, for the above composition and dispersive 
contribution of platinum. 

(a) (a) C: 54 N: 1 
P(IEI) 

t~~......(b) (b) C: 50 N: 5 
(c),.,, (c) C: 30 N: 25 

" ~ , \  

0 1 2 3 IZl 
Fig. 4. P.d.f. of IE I for PI: equal-atom subcentric arrangements. 

The assumed composition of the unit cell is C55 in each of the 
three cases here considered. In the label above, C: is followed 
by the number of atoms in the centrosymmetric fragment and 
N: by the number of atoms outside the centrosymmetric 
fragment. 

compos i t ion  C38Pt 2 and five C atoms not related by 
a non-crystallographic center of symmetry. Moreover, 
the dispersion of the Pt atom is also taken into 
account. As expected, there is here only a slight 
departure from centrosymmetry which gives rise to a 
considerable similarity to the centrosymmetric p.d.f. 
(with dispersion) in Fig. 2. Fig. 4 shows the effect of 
subcentric arrangements for the equal-atom case; 
three situations are considered, all corresponding to 
55 C atoms in the unit cell of P1. It is interesting to 
note that even the extreme pseudocentrosymmetry in 
Fig. 4(a) leads to a p.d.f, significantly different from 
the ideal centric one. 

Special positions in the space group P222 

Let the asymmetric unit of this space group contain 
M atoms, K of them occupying general positions 
and L = M - K being located on twofold axes of the 
space group. Since the Fourier coefficients of the p.d.f. 
of I EI are just the values of the characteristic function 
at points corresponding to summation indices, the 
general form of the Fourier coefficient must be a 
product of contributions of atoms lying in general 
positions and those located on twofold axes. The 
contributions from general positions can be taken 
from Shmueli & Weiss (1987), while those from the 
special ones are obtained by noting that the 
trigonometric structure factor for an atom located on 
a twofold axis of P222 has the form 

~ s = 2 c o s 0  and r/s=0, (17) 

for any of the three independent axes of rotation. The 
structure factor for the above arrangement is therefore 
given by 

K K L 
E =  X nfe, j + i X nj•gj -}- X nj~sj, (18) 

j=l j=l j=l 

where ~gj + ir/gj is the trigonometric structure factor 
for an atom located in a general position of this space 
group. The maximum values of the real and imaginary 
parts of lE [ are now given by 

K M 
A ~ =  ~ nj, q= Y~ nj, A M = A ~ + q ,  

j=l j=K+I 
K 

BM = X nj (19) 
j=l 

and are used in the calculation of the p.d.f, of I EI. 
As pointed out by Wilson (1989) the contour sur- 
rounding the locus of possible non-zero p(A, B) 
values, corresponding to this case, is a rectangle of 
sides 2q and 2BM terminated by two semicircles of 
radius BM. This contour is obviously contained in 
the rectangular boundary shown in Fig. 1. The 
expressions for the p.d.f, of IEI are analogous to those 
in the previous subsection. The required Fourier 
coefficient is a product of all the atomic contributions 
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and is therefore given by 

C.v = ~ [ (2 / r r )  ~2 Jo(,Xj+Yj])Jo(]Xj - Yj,) d 0 ]  
j=l o 

where 

M 
x I-I Jo(27runj/AM). (20) 

j=K+I 

Xj = ( 2 7runJ AM ) cos 0 
and (21) 

Yj = (2"n'vnj/ BM) sin 0. 

Results of numerical calculations based on the 
formulae just derived are illustrated by curves shown 
in Fig. 5, where we compare the case of a highly 
heterogeneous asymmetric unit with all the atoms in 
general positions (Fig. 5a) of the space group P222, 
the above plus two Pt atoms on one of the twofold 
axes (Fig. 5b) and the ideal acentric p.d.f. (Fig. 5c). 
The three p.d.f.'s are remarkably similar which indi- 
cates that intensity statistics for this space group are 
insensitive to both atomic heterogeneity and the pres- 
ence of heavy scatterers in special positions. This 
insensitivity is exceptional among the space groups 
of low symmetry. This could be demonstrated only 
by recourse to the present general theory. 

We have also carried out a number of test calcula- 
tions that suggested themselves in view of the referee's 
remarks and the novel aspect of the study here re- 
ported. Thus, phase integrations using the exact con- 
tours were compared with those done on the rec- 
tangular boundary,  and a complete agreement was 
observed. All the calculated p.d.f.'s have been com- 

- - -  ( a )  

P(IEI) ~ - " "  
• .. ( b )  

" ........ (c) 

"".X% 

t L * L 

0 1 2 
IEI 

Fig. 5. P.d.f. of IEI for P222: ideal and non-ideal distributions. 
(a) Asymmetric unit: ClgPt , all atoms in general positions, (b) 
as (a), but with a Pt atom on a twofold axis, (c) ideal acentric 
p.d.f. 

pared with corresponding simulated histograms of 
[E I as described by Shmueli et al. (1984). The sample 
size was kept at 200 000 and the resulting R factors 
range from 0.01 to 0.02. All these results are consistent 
with our arguments presented above which justify the 
use of the analytically more convenient rectangular 
boundary rather than the exact contour that might 
correspond to a given situation. It should be pointed 
out, however, that the larger the regions within the 
boundary for which p(IE[) - 0, the more terms in the 
Fourier summation are required for good conver- 
gence. 
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